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1. INTRODUCTION ~4f

Under regularity conditions, the infinite set of moments (when these

exist) characterise a distribution; thus it is appealing to use the first

s sample moments, or functions of these, as test statistics for goodness

of fit. For example, the statistics b1  and b2 have long been used to

test for normality, using the first four sample moments. Gurland and

Dahiya (1970) and Dahiya and Gurland (1972), in articles hereafter referred

to as GD1 and GD2, developed this approach in a systematic way by comparing

functions of sample moments to the corresponding functions of population

moments; these functions were chosen to be linear in any unknown parameters

of the distributions.

In this article we explore some theoretical aspects of the Gurland-

Dahiya method, and also give some details of the techniques when applied to V
tests for the normal, exponential, and Gamma distributions. The basic test

A 2
statistic of Gurland and Dahiya, Qt below, has an asymptotic X t
distribution with t=s-q, when q parameters must be estimated and s %

sample moments are used. We show how Qt can be decomposed into t
ot

components C.i each with an asymptotic X1 distribution, and such that
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Qt a Qt- * Ct* Thus as a new sample moment is added, the new test statistic

contains the previous statistic plus a new asymptotically independent term.

The statistic Qt thus breaks down into components in a manner similar

to the Neyman (1937) statistic, or to EDF statistics (Durbin and Knott, (1972)

Stephens (1974)); each new component might be expected to test for a new

departure from the tested distribution. When applied to a test of normality,

with s = 3 or 4, the statistics b I and b2 result naturally from the

method. 0

Also, we show that the test statistic for exponentiality, using s = 2

moments with only the scale parameter unknown (so q - 1) is equivalent to

several other statistics already proposed by various authors, often from

quite different points of view.

2. THE TEST STATISTICS

2.1 As far as is practicable, we use the notation of GD1 GD2. The

symbol ', in the matrix algebra below, will denote the transpose of a column

vector or of a matrix. In standard notation, the same symbol will be used

to refer to population moments or sample moments (u! and m! respectively)

about the origin. In context, there should be no confusion.

2.2 Suppose the null hypothesis is

H0 : a random sample XI,X 2,.. Xn comes from the continuous

density f(x;e),

where 0' a (81,.... e ) is a row vector of q unknown parameters. We assume , -

for simplicity that all parameters in the distribution are unknown, but the

%



treatment may easily be modified when only a subset of parameters in f(x;8)

is unknown.

2.3 Suppose Ci. i - l,...,s are functions of the population moments

i',' j • 1,...,s, chosen so that C. is linear in el,...,e Thus,
3i q*

writing ' = ( cl,.. s), we have • We where W is an s x q matrix

of known constants.

2.4 Let h. be the same vector as ri but with sample moments

M! -En (Xrl /n replacing the population moments i! , and let
1 r=l r

h' = (hl,...,hs); h is a consistent estimator of .

2.5 Consider the vector statistic AT (h-C) , which measures the difference

between h and . Its covariance matrix is E = JGJ' , where G is the

s x s symmetric matrix with entries G P and J is the

s x s Jacobian matrix with entries Jij = (SC/i) , (i,j=l ... ,s) .

Gurland and Dahiya show that, if the (2s)-th moment of f(x;e) exists,

rn (h-C) is asymptotically normal with mean = 0 and covariance matrix E

then the asymptotic distribution of

(1) Q = n(h-C)' Z- (h-C)

Further, if Z is replaced by Z , a consistent estimator of Z

the asymptotic distribution of

(2) Q* n (h-e)' Z h
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2
is also In general, E contains some of the unknown parameters in e

Z is obtained by replacing e in Z by 8 , say, where 0 is a consistent

estimator of e .

2.6 Statistics Q and Q* will be large when the sample vector h is far

from C , but, as they stand, they cannot be used for testing the fit of the

sample to f(x;B) because they contain the unknown parameters in 8 ; in Q

these arise in C and E . However, when e is used to replace 8 in E

the resulting matrix Z will no longer be a function of 6 ; thus e enters

Q only through C . Gurland and Dahiya propose that Q, the minimum

value of Q* as e varies, can be used as a goodness of fit statistic;

furthermore, if the minimum occurs for 8 = 8 , then 8 is an estimate of 8

analogous to other "minimum chi square" estimators. The values of 8 and Qt

are found as follows. Define matrices

Z W '- z V and Z = W' z- W

1 A1 All(3) R = WZ" IV' E-  and R = WZ W' E

- (I -R) and A=Z (I R)

where E is obtained as described above, and where Is  is the s x s

identity matrix. Note that Z and Z are q x q ; R, R, A and A are

s x s and R and R are idempotent. Then (GDl, GD2)

a. - 1  Z'h and

(4) Qt = nh'Ah . Define also

Qt a nh'Ah .
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Note that, to calculate Qt it is not required to know -
tB

2.7 Notation In the following sections we shall examine the properties

of Qt and Qt . New matrices and vectors will be defined as required; for

convenience, the most important of these can be listed together as follows:

matrix T: Z = TT' where T is s x s lower triangular (definition of T).

matrix K: Z = KK' where K is q x q lower triangular (definition of K).

matrix L: L = T w-1 ( T') , a symmetric and idempotent s x s matrix.

S = I s-L , a symmetric and idempotent s x s matrix.

P is the matrix which diagonalises L : thus L = PA P' . The leading sub

matrix of A of order q is I and other entries of A are zero.
r qs 1

Vector g of length s is g = T' h , with components g1 , 2.... g

UVector of length s is t = P'g = PT- h , with components ti,2
A A A A

When E is used instead of Z the matrices become T, K, L, S, P and the

vectors become g and .

3. THE STATISTIC Qt

3.1 Gurland and Dahiya (GDI) showed that, on H0 , the distributions of Qt
^ 2

and the statistic Qt were each asymptotically Xt , with t = s - q . We

now extend these results to show how the statistics can be decomposed into

components.

Theorem 1. There exists a set of components C. i = 1,2,. such that
t1Q - . Ci , where t = s - q ; asymptotically, the C. are independent,

2 ^each with a X distribution. There also exists a set Ci , such that

A 2

t * ri- ; asymptotically the C. are indevendent each with a

distribution.

*1 %
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Thus Qt*l Qt + Ct+, and Qtl - Qt + Ctl ; that is, a new

asymptotically independent component is added to Qt to obtain Q l , and to
A A

to obtain Ot •

For ease of notation, the proof below is given for Qt only; the proof

for Qt is very similar. In what follows, distribution theory will mean

asymptotic distribution theory. In this section, when sdl sample moments

are used in part 2 of the proof, the vectors and matrices will carry an

asterisk, for example, h*, Z*, T*

3.2 Proof of Theorem 1. Part 1

Decomposition of Q. Suppose Z = TTI where T is a lower triangular

s x s matrix. Then Z - WIC 1W may be written Z = KK' where K is a lower

triangular q x q matrix. (Note, however, that K is not W'(T')- )

Let h =Tg, so that g= T h ; then Qt nh'Ah becomes

0t = ng'T (Is -R)Tg

Hence H

(5 Qt ng'(Is-L)g

where

1-1 -L = TWZ W'IET

=T WZ 'I(T,) - 0

,-, ., ,-,. ,,, . .1 , --, -,.. ., ., . ,,-. , , w,,,,q. 'VI ,, 2,, ,,,. ,
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It is easily shown that L is symmetric and idempotent; thus matrix

S =I -L is also symmetric and indempotent.
s S

Coment. In many situations (e.g. for tests of normality and exponentiality,

to be discussed in Sections 4 and 5 below) L and S are also diagonal,

with diagonal entries 1 or 0 . Define A1 and A2 to be

I 0 0 0

qA, q and A 2=L

where the 0 matrices have the necessary dimensions to make both A and A,

A2 of dimensions s x s . Then L will equal A1  and S will equal A2 ,

and, from (5), we have

(6) it ~gS 
tq

It at once follows that, if t = s - q ,

t W '

(7) Qt n E C.
j=l

where component C ngq , j = 1,...,t . The independence of C.
j J~

follows because gq j is normal N(0,1) and the covariance of g is

T'-(T-I) ' =i I . When S = I-L is not itself diagonal, it may be written

PA2P' where P is orthogonal. Then let = P'g P'TIh and we have

s 2 %

(8) Qt =n&'A2 = n Z i
iffiq+
t 2 i~ql ~*

N&"AA
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Thus again Q is the sum of components C. = n . , 3=1,... t; each

* is N(0,1) , and the covariance matrix is P'T-IZ(T 1')'P = I so thatg+j,,

these components are independent and X2 distributed. Corresponding results

hold for Qt . which becomes n Z=q+l E using the notation of Section 2.7.

Proof of Theorem 1. Part 2

To complete Theorem 1, we must show that the same set of components 1"

arises in Q t+ (or Qt+I ) as in Qt (or t) with the addition of one new

term. For this purpose (pursuing the general case when L and S are not

diagonal) we show how matrix P is constructed so that S = PA2 P' or

equivalently L = P&IP' 
"

Construction of matrix P. The s x s orthogonal matrix P is constructed

as follows: let P1 = T'W(K')
"I , an s x q matrix, and let P2 be an

s x (s-q) matrix, such that PiP, = 0 and T2 = I ; then construct

p= [1-.P21

Lemma 1: P is an orthogonal matrix.

Proof. To show that P is orthogonal we need P'P = W We have
,Ii I,

PoP = K' W'(T')' TI W(K')-

= K W I W(K,)

= K Z(K,)

= K IKK,(K') "

=1 q as required.

Al"
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Lemma 2: LP2 s 0

Proof. Since PI P 0 we obtain
-2

(9) PIT-IW(K )  0

thus

(10) P2T  0,

and

(11) LP2 = T-
1Wz- 1W'(T') -1 = T 1 Wz 1 (PIT - 1W)' =0

Lemma 3: P is the matrix which diagonalises L ; L = PA P' 

Proof. We have

P'LP, KIW'(T')-I T wz'IW'(T')- T-I W(K,)- 1
1 -1 W, 1 WZ. IWT W(K,)_ 1

SK-W 1zz Z 1(K')- -

-K KK'(K')
1

q

By Lemma 2, LP2  0 , so

P I q 0

P'LP= LPP 2] = 0 2 1

20

.*..,
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Thus the idempotent matrix L equals PAI P"

To complete the proof a similar procedure is now followed in s.l

dimensions. We have P* ( (T*)- w*(K*I)-I ; and, as above, P*'P* = I and
1 1 1 q

P*IL*Pl I q . Since Z is the leading submatrix of * , it follows that

T*=

and

T- 0

(T ) -1 L9d
qS

where t' , v' are row vectors of length s , 0 is a column vector of

length s , and c and d are scalars. Also

sW

[we

where w' is a row vector of length q . Therefore 0

T 0 0

1 -1=

= (K*')-I

Ia'I

Um

S---- V
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where a' = v'W + dw' . DOfine matrix V , of dimensions (s~l) by (s-q):

S

4p2]

where 0' is a row vector of length s-q

Lemma 4. V is orthogonal to P .

Proof. V' p* - ' (K*') - P T'W(K*') - 0 , from (10)t'_

Therefore, if we define

P*=

where y is a column vector of length s and r is a scalar such that

the last column simply completes P* , we have

P* = [P*:P ] "

1 2*

Now

Qt= ng'(I-L)g =ng' (I-PAP')g = n(P'g)'(I-A 1)P'g

n 2 1 where = h
i=q+l 1

.~"" "Y (' K 
N
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that is,

I T-

2 h

Therefore Qt = nh'(T')-1P 2PTIh For Qt+l we have

(T*)- h* z ' s 'h d
Ive + Iv'h + dh l

Hence _TI

PLi(T h* h2@

ITh+r(v'h +dh 4 )j4

The first s-q components of Q agree with those of Q This
t~l 

a,

result, together with Part 1 completes the proof of Theorem 1 for Qt

4. THE TEST FOR NORMALITY ',.

4.1 We illustrate the above decomposition with the test statistic for
_0normlity given in GDI. This statistic is constructed as in Section 2 above,

p



Pt

with lu = { [, log 113 log(U 4/3)} Here 2P U3' 14 are moments about
with ' (Theno

the mean, and are, of course, functions of 01, u2, and 4 Then

* W6 where

1 0
0 e1

Wuf0 0 and G

with e l, 1 02 = 112 and e* = log u2  Vector h is then given by

h' = {a log m m log(M4/3)u , where m2, m3, m4  are sample central2'lo in2 i 3 , 4og2m33)4

moments. Then (GDl, equation 4.10)

e20 0 0

0 0 60 0
0 2

kO 4 0 32/3

In this example E depends on e2  but not on e1 (the component elements

J and G of Z do depend on 8I but e drops out in the final calculation;

GD1 gives the separate matrices J and G as though 81 were zero). The

decomposition Z = T1' gives

0 0 0

2 0 0 0 I*F2
0 2 0 0 0 1 0 0

T 0 0and T /
2 0 0 - 0.,

0 2F2 0 2 '(2/3) 20 -.if-TT 0 i!

, ... . U' . S. " - -, .. , w , ..,l ; U.. ..... .. , . . - . .. . . " " ,

* ~. ~ ! '' - / /8j
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Further, we have

O~~. 0 1 0 0
ol - I' o o o

Z =W' W " and R U 1 0

0 1 0 000
02 00

ozooJ

finally S = (Is-R)T is

S=0 0 0 0

00 10
0 0

S is diagonal, so there is no need for further decomposition of S

Matrices E, T, T are obtained from E, T, T by replacing 02  by its

estimate B2 ; then g is T' h , and with 0 2 = m2 ' we have

A1/2 /2 31/2
g (M1/ , (log m2)2; 3/(6m 2  .= L 2l2m2  ,

-^(log m2 )(1.5)1/2 + {log(m4/3)}(.375)
1 / 2]

The test statistic Q2 is

A A2 + 2 = A 
A2

Q2 =ng3  ng4  C

where

2^ i3 ^ 3n m '

C1 = 6m and C2 =T- (-2 log m2  log -)
6m2
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4.2 Comments. Component C is equivalent to b, a m3/M 2 , and C, is

equivalent to baM 4/M2  b and b are the well-known measures of
2  4 2  2

skewness and kurtosis, often proposed for testing normality. An interesting

aspect of the method is that it reveals two functions of moments, C1  and

1/2 , which are asymptotically N(0,1) and independent, and which, when
2

A

squared, form the components of the overall statistic Q2. GDl gives the

A 

A

final statistic Q2  (there called Q in equation 4.15) but not the
A ^

decomposition. The statistic 8 in this case becomes 0 = (m , log m2)' .

4.3 Extension to any value of s. These results for s = 4 may be extended

to more general s . For the calculation of E set 61 = 0 ; then

e = B;(2r)!/(2rr!) and odd moments are zero. GDl gives J in two2r ' 2r 2

parts, the Jacobian J of the transformation from central moments to origin

moments, and Jacobian J2  of the transformation from { to central moments;

J - J2J . It may be shown that (J1 , (i =i , i > I

(Jl)ij = 0 otherwise; and (J 2 )ii = I if i is odd, (J2)ii 1/ / i  if i is

even, and (J 2 )ij z 0 otherwise. Let Z have entries aij ; ij = 1,... ,s:

then

11 = 2 il i > 1 =0 , j >

V

.... 2 1 ij both even€ij iv~j! ( )

2 (ij) i!i!2 r- ij both odd
12 2

Oi* 0 otherwise

- - -- ---
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Then let T be the s x s matrix with entries tij defined by

iii
11l 0 62 - t =0, > i i , 0 , i > I

t2,,.2 m ,n-1/2 n 1 m

e m+1/2 (2m+l)!t 2m+1,2n+l = M-nmn) -(n 1Fi2 ,n 5_ m

23. 2n 2 (rn-n)! [(2n+l)!}

t = 0 otherwise.

It may be shown that E = TTI , making use of the identities

22n (i+i)! (2i+2j)!
n=O (2n)! (i-n)! (j-n)! (2i)! (2j)!

and

k (m+kl)! (2mr2k+2)!
E (m-n)!(k-n)!(2n+l)! (2k+l)!(2ml)!

Let U T and let U have entries u.. Then

U -- , u 0, j> 0; u 0 i>0Ullil

2m-1. 1/2
U2m-1 )

u 2rn2n =(-ln() m-1/2 n <-
20
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u(- )renf (2mn l) =}1/2
(m-n)!2m -n e2n/2 (2nl)!

u.. - 0 otherwise.

This may be checked by direct calculation of UT . Now W is the s x 2

matrix 4

10 1

0 1

0 0 0

0 2 and column 1 of Tw is 0

0 0 0

Column 2 of T' has zeros in the odd positions and in the even

positions the entries are

2m1 1/2 m m
1 M-i )  1)m  Z ) n  n)

(T 1W) 2m,2 = 2 m -1/2

1/(21/2) when m = 1 , and 0 if m # 1

Thus T W is the s x 2 matrix
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0

T- W 0

0 0

and so

1 0

for all s

Now R =W(W'Z1 W) - WO(T 1 T- 1 so

r1 0 '1 0
0 1 1 0 F-

Ru 0 0f~ Lr 2 :]F 0 1 0
0 2L0 2O 0 -r

S* 1

0 0:

0 2

0 0:



-19- .

We now compute S = T I(I-R)T = I-T' RT

Using the above expression for R we find -

s - I - TI [W:O]T

a I- [T-Iw:o]T

0 -• e 2 o 0 o.
10 r2 0 oI 0 a

S is again diagonal. Thus if g = T' h where T is T with 82

replacing 82 , we have the general result

Qt= n Z gi
i=3

Now vector h has components

hI =m I'

h m

h2r+l m 2r+l

.2rr!
h 2r ' log( )m2r)•

Because of the structure of T-1, odd gi involve only odd hi , and

even gi involve only even h. • We have, for r an integer,
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(u2r, 2n)h2n

/(2r1r,,• ., : lg2 n! mn_

n-I r n 2r-1/2 (ogt nT !

( 2r-1 n
1') r Jtr.1 Z/ (-l)n(r)log 2n n ! m

n I L * -'j m2n)

In particular,

A lt g m 4 A2 3 b 21
4 -log(----) , and g4 = 8 log 3T , as above;

32

also

32 • b 2
6 = 4 and g6  T6[log( -

m 4b 
2

where b2 = M4/M2 as before, and b = m6/M .

The odd gi are, with r an integer,

A r

92r.= E (U2r+l,2n+l)h2n+l
n1l
r )r+n /(2rl)! m m2n+1ri

En (-l (2n+l)! in+1/2 2rn~rn

n-n 2 2  (r-n)!

C r v/(2r~l)! r Cl n  2m2+
2()r r  E (-ln+/2)

nal (2n+l)! 2 (r-n!
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In particular, using 02 M 2 as before, we have

1 m3 ^2 1 2 m also 0
g3  - - and g - b, where b 32g3 /2 3 67 2

1 ES
g 5  (b 3 - 10b 1) 1 where b 3- 7TF

*2

Thus

12 3 b2  9b 2

Q4 nf1 b, gz o -) + -"l1 , 0_bl )  + s _ (log -4-:) ,
Sb2

2
with, on H a X distribution asymptotically. Extension to higher

order Qt is obvious.

S. THE TEST FOR EXPONENTIALITY
A

5.1 In this section we give the general decomposition of Qt for the test

for the exponential distribution F(x) = 1 - exp(-x/6) , x > 0 . Following

GD2 we define

1 U2' s

then C = W8 , where W' = [1,2,...,s] ,

Vector h is { with m! replacing i! The covariance matrix

Z of /in h is then known to have entries

6 2 ij(i+j-2)!°ij (i-l)! (j-l)! '
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We now write Z = TT' where the entries of T are

t .. e i (j ]  , i _>

=0 , i<j.•
. <

Then U = 1 has entries

• "N
u ja

ijj j-l

=0, i<j. 

Further results are: (TI W)' = ( , , ... , 0) ; Z = 2/O " R has first
u-s

column entries 1,2,... ,s and all other entries zero; T- 1R has 1/6 in

row 1, column 1 and zeros elsewhere. Finally S becomes diagonal, as for

the normal case:

0
S M IsI.

and further decomposition of S is unnecessary. Let g, be the i-thA 
^^-I,,

component of g Th: using 9 as the estimate of 8 in T , we have,

with m; 1 : i' ,)-,

g. = - 1 C_1 = 1,2,...- ju l j r%'. _

In particular, writing s. for m! for ease of notation, and using 8 s
3 1

we have

N
.%V
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a~ + S2,

53 s a s 5
gl 1 g2 2 s212 13

1

s 2 + s 3  + 3s 2  s 3  s 4

Note that is equivalent to

922
s 2  n 2/ n lr2

- n Z (Xr ) ( X)
s r=I r=l •

At A2

The test statistic Qt is then n Zi= 1 gl~i

5.2 Comment. Connection with a test for uniformity. Suppose the sample
J

values Xi are placed in sequence on a line, and let v = Mi=1 X. ;

suppose the v are divided by the sum of the Xi , z = n= Xi , to
0 ) 1 11

give values u = /z ; it is well-known that, on H0 , the

u j = 1,... ,n-1 are the order statistics of a sample of size n-I from

the uniform distribution on [0,1] The values Xi/z are the spacings d.

between the u , and a test for uniformity, proposed by Greenwood, is

11 2 2based on G = Z= d2 * G is then s2/(ns 1 ) and so component g2  above is

equivalent to G . There has recently been a revival of interest in G

and percentage points for finite n have been given by Burrows (1979),

Currie (1981) and Stephens (1981). These points show that v' g, converges

only very slowly to its asymptotic N(O,1) distribution. .

6. TEST FOR THE GAMMA DISTRIBUTION

6.1 The two previous illustrations, tests for normality and exponentiality,

were interesting because the general form could be produced for any s , and

A-A
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also because for small s the test components reduced to already well-known

test statistics. In DG2 the 0t  statistic is also discussed for the Gamma

distribution. This situation is important because although many tests exist

(EDF tests, for example) for populations in which the unknown parameters are

location or scale, far fewer tests are available for the case, as here, where

a shape parameter is unknown. Unfortunately it does not appear to be straight- '4

forward to give very general results, but we now develop the components of

Q1 and Q2

The null hypothesis is H0: the population for X is

4'X

f(x) 1 rca Oa x e ;X/ x > 0 ; L, > 0 .

Thus q = 2 In DG2 new parameters are defined: 0I = a8 , 2  B

(we have here changed the DG2 notation). Then the vector is given by

=KI' I K3  Ks

where K. is the j-th population cumulant K. = (j-l)!S a Then if

9' = (019,8) we have C = WO with
12

10 0 ... 0

1 2 s-li

Vector h is vector 4 with sample cumulants ki replacing population

cumulants K.. Considerable algebra gives, for s = 3 ,
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% -6

a- a 2a

E1 +a 108ac+6z

3c 2 10+8a 48 50ao+6 
2-

Then

4y 6

and

0 0

-0

T, -ry -y o

2 4 1

aSS
where y 2 (1 +c) and 62  6(l+a)(2+cL) Finally I -R isI -R 1 -

s 3a+10 -4 ,

I
0 -6a1-28 3a+14

and

0 0 0 1
1/

S T (Is R)T= 3c{*0 4 (12(2+i)}

0 12({2a)) }1/ 2  3 (2+).)= "
L:

N0-
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S is idempotent of rank 1 as required, but, in contrast to the normal

and expunential cases, S is not diagonal. Decomposition into S = PAP'

gives

0 0 0

P = 1 0 6+3a)1 / 2  2

/E-+l-0 1/
-2 (6+a)

and Aij = 0 for all ij except A = 1

1 ~ A A

Then using 3.2.8 we have = P'T-h , and = P'T- h , where P , T

are derived from P , T by replacing parameters a and 8 by consistent

estimators a and 8 (GD2 use moment estimators). Because only A33 is

not zero in matrix A

22
Qt = n'AE = nC3 , and similarly 0-= nC3 .

^ . .-.

We need therefore find only 3 " This becomes

E3 a/ (10+3a1) w

where
2 1 -

w' [0, (2 2 1/2' -2 2 1/2] ,,
-(2+2a) 1/'(2+2a1) l

and

k2  k3
h =(kit k 2, 3

1 2
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k1 k 2moment estimators of a and B are a =- and S - .~ Thus
k2  1

k2

2+2aL 2 A ,/ and 2Lz- -

10+3a (10k2 +3k 1)

then

k1 (k k -2k 2

E3 /2 k 3/2 (10k 3k2 ) 1 / 2 (k2 .A 2 1/2

and

k2  22
1k (k k -2k)

3 1 2
2k 2(10k 2+3k,)(k 2 A 1)

In terms of sample moments this is, writing s. for mn! as in Section 5,

2s2

12 2 2

Note that s s + S s 2- 2s 2= m'm - 2m 2, where mn. is the i-th central
1 3 2 1 2 1 3 21

moment.

6.2 Coimment. The calculations above can be considerably simplified by

starting with 4 = 2 3 ) that is, by missing out the first
1 2 s-1

component in the above treatment. This has the effect of reducing the matrix

and vector dimensions by 1. For s 4 we now pursue this approach.

%. %
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6.3 Test for Gamma distribution, s=4. Short method. Let

= _ = (8,28,38) 8[1,2,3]

Then = W'8 where W' = [1,2,3] , and

3+2a 10+8az 21+18a

= a 48+SOQ+6a 2  132+lS3a+27a 2  j
21+18a 132+1S3a+27 2  450 + 1182 315 a2 6a3

2 1

a2  ab ad
82 2I2
- ab b2 +c 2  bd+ce j

d bd+ce d 2+e2 f

V

where a,b,d,d,e,f are defined by comparing these two expressions for Z

Decomposition of Z gives

E TT where T

the ded j e fjthen

-1 i _ c c

be -cd • 1

acf cf f,

and

%.
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1 1

a a

T-1 = -r 2 b A'E 2a-b r say
- c ac T ac

3 2e +be-cd 3ac-2ae+be-cd
?f c 7f acf

-1- -1L

We have Z = W'Z'IZ = W'(T')I T-I = r'r , so that Z is scalar. Matrix L

becomes

L = T- RT

= TI Wz" 1W'I T

= ZI TI WW'(T')' T 1T since Z is a scalar

= Z-I T- W (T') -

= Z'I(T-1 W)(TI W), = Z 1rr'

Define z to be the normalised vector r , that is, z = r/(Z) I/2  Then

L = zz'

We now construct P such that PAP' = L

Clearly column I of P is vector z . From the solution for s = 3

we know column 2 has components (b-2a,c,O), normalized. Lastly column 3 is

-cGI

(b-2a)G

[(b-2a) 2 +c 2] .

" A - R.:
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normalized, with G = be-cd-Zae+3ac . The normalizing factor is m where

m 2 G c2G2(b-+ [ (b2a) 2+c212f2

a [c2 (b-2a) 2]G2 + [c2 '(b-2a) 2 ]f 2

2 [C2+(b-2a)2]{G2 + [c2 (b-2a)2]f2 }

Finally = P'T-1h Ile find , and can then replace a and B by

estimates a and B to obtain

Component 2 is now the same as E. of Section 6.1; the new 5 is

[cf 0 0

- [-cG, (b-2a)G,{(b-2a) 2+c2f] -bf af h

be-cd -ae ac

-c 2fG - bf(b-2a)G + [(b-2a)
2 + c2]f(be-cd) 

1

1 af(b-2a)G - aef[(b-2a)2  1 c2I h=" Bacfch

acf[(b-2a)2 + c2 ]

acf12 (1+a) (3a+8)

-acf3(l+a) (26+9a) h
m Bacf

acf 2(1 c1) (10+ 3a)= cI I
. ~ V~~ ~.,~
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112 (8.3ci)
J -) .3(26+9c ) h

2 2(10+3a)j 2 ]

with

M = [c s(b-2a) ][G +{c (b-2a)2rf

z 2(1,(C10+3oC1)12(1+) 2(2+) (39+19 +3c

a24(1+a) (100+ 3a) (2 .a) (39 + 19ai+3a 2

We obtain ?,A

2 V2

2 2224(1.Q) (10+3a) (2+i) (39+19a.+3a2)A 2

where

k2  k 3  k4

V u12(8+3ci) !- 3(26+9a) k + 2 (10+3ai
k1 k2 k3

A 2 2
To obtain we replace a and 8 by their moment estimators a = k 2

and B = k2/k 1  Then

2 ̂ 2 A A

Q2= n(&2+&3) Q C2  where Q, is given in Section 6.1, and

C2 3 n

"'V.
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7. FURTHER REMARKS

The techniques which have been explored above lead to goodness-of-fit

statistics based on sample moments; the test statistic can be made dependent

on more moments by adding new components. These components are asymptotically

independent, and can be expected to test for different departures from the

tested distribution, analogous to components of EDF statistics (Durbin and

Knott, 1972; Stephens, 1974) or those of Ntyman's statistic (Miller and

Quesenberry, 1978). It has been shown how O , for small t , leads to

tests for normality and exponentiality based on already well-known statistics,

and the alternatives for which these are powerful are generally recognized;

however, the power of higher-order components to detect important departures

must be investigated. A related question is how many components to take, since

the addition of too many can weaken the overall power against important

alternatives (see Solomon and Stephens 1982 for remarks on Neyman's statistic

which are also relevant here; also Durbin and Knott, 1972, Miller and

Quesenberry, 1978).

We note also that the technique is not unique: other functions of moments

can be made linear in unknown parameters and will lead to other test statistics.

Interesting questions then remain on how best to choose C . These questions,

and the practical questions of producing points for finite n ,and power

studies, are currently being investigated.

-e
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